Honors Solutions

Honors Lesson 1

1. $135 \div 9 = 15$;

15x2 = 30 people approved $135 \div 5 = 27$ people disapproved 30+27=57 people answered 135-57=78 people didn't answer more people didn't answer

- 2. $49,170 \div 1,250 = 39 \text{ r.420}$ 39 times with 420 sq mi left over
- 3. 2x\$35.99 = \$71.98 \$71.98 + \$15.95 = \$87.93 \$87.93 - \$5.00 = \$82.93 \$100.00 - \$82.93 = \$17.07 change
- 4. \$17.07 \$10.00 = \$7.07 change \$7.07 - \$5.00 = \$2.07; \$2.07 - \$2.00 = \$.07; \$.07 - \$.05 = \$.02; a ten, a five, two ones, a nickel, and two pennies
- 5. 24x12 = 288 per case; $900 \div 288 = 3.125$ rounded to next whole number is 4.
- 6. $1,260 \div 60 = 21$ hours
- 7. 15+(-33)=-18; $-18+5=-13^{\circ}$

Honors Lesson 2

- 1. Beginning price was \$60, and he purchased 30 shares, so he spent 30x\$60, or about \$1,800. Ending price was \$45, and he sold 30 shares, so he recieved 30x\$45 or \$1,350. \$1,800-\$1,350=\$450 lost.
- 2. $\frac{3}{8} + \frac{1}{8} + \frac{3}{8} = \frac{7}{8}$ of a mile traveled $\frac{8}{8} \frac{7}{8} = \frac{1}{8}$ of a mile left

- 3. $ran \frac{3}{8} + \frac{3}{8} = \frac{6}{8} = \frac{3}{4}$ mile $5,280 \div 4 = 1,320; \ 1,320 \times 3 = 3,960$ ft running jogged $\frac{1}{8}$ mile $5,280 \div 8 = 660$ ft jogging Distance walking is the same as distance jogging, so that is 660 ft also.
- 4. 21 x 60 = 1,260 per hour 1,260 x 24 = 30,240 per day 30,240 x 365 = 11,037,600 per year
- 5. -5+4-8+10+5-4-6=-4 gallons
- 6. -4x4 = -16 qts

Honors Lesson 3

- 1. $68 \div 4 = 17$ units on a side $17 \times 17 = 289$ units²
- 2. $8 \times 6 = 48 \text{ units}^2$ $16 \times 12 = 192 \text{ units}^2$ $192 \div 48 = 4 \text{ times the original}$
- 3. $4x3 = 12 \text{ units}^2$ $12 \div 48 = \frac{1}{4} \text{ the original}$

area of rectangle A = XY units² area of rectangle B = 9XY units² $9XY \div XY = 9$ The area of B is 9 times that of A.

5. 39

- 6. 13 This can easily be solved by drawing a diagram or a number line.
- 7. rectangle: $14 \times 16 = 224 \text{ in}^2$ triangle: $\frac{1}{2} \times 14 \times 15 = 105 \text{ in}^2$

total: $224 + 105 = 329 \text{ in}^2$

8. $3.14(15^2) = 706.5 \text{ in}^2$ $3.14(12^2) = 452.16 \text{ in}^2$ $706.5 - 452.16 = 254.34 \text{ in}^2$

Honors Lesson 4

- 1. $\frac{1}{2} + \frac{1}{3} = \frac{3}{6} + \frac{2}{6} = \frac{5}{6}$ $\frac{6}{6} - \frac{5}{6} = \frac{1}{6}$
- 2. 12:00-7:30=4:30 4:30+3:00=7:30 hours worked $7.5\times4.65=\$34.875$ or \$34.88 earned
- 3. $\frac{3}{4} = \frac{15}{20}$ or $\frac{30}{40}$; $\frac{4}{5} = \frac{16}{20}$ or $\frac{32}{40}$ E. $\frac{31}{40}$
- 4. $\frac{3}{4} = \frac{18}{24}; \frac{5}{6} = \frac{20}{24}$

We can see at a glance that

A or $\frac{19}{24}$ is an answer.

Check other fractions by using the rule of 4 to compare each with the two given fractions. E also falls between the given fractions.

$$\frac{3}{4} \Leftrightarrow \frac{11}{14}, \frac{42}{56} \Leftrightarrow \frac{44}{56}$$

$$\frac{5}{6} \Leftrightarrow \frac{11}{14}, \frac{70}{84} \Leftrightarrow \frac{66}{84}$$

Or, change each fraction to a decimal for easy comparison.

- 5. It will be quadrupled: $3.14(5^2) = 78.5 \text{ ft}^2$ $3.14(10^2) = 314 \text{ ft}^2$ $314 \div 78.5 = 4$
- 6. $12 \times 22 = 264 \text{ in}^2$
- 7. rectangle:

 18 x 30 = 540 in²

 paralellogram:

 8 x 15 = 120 in²

 540 120 = 420 in²
- 8. area of square: $36 \times 36 = 1,296 \text{ cm}^2$ semicircles: $\frac{1}{2}(3.14)(5^2) = 39.25 \text{ cm}^2$ $39.25 \times 4 = 157 \text{ cm}^2$ $1,296 - 157 = 1,139 \text{ cm}^2$

- 1. \$1.00 5 x \$1.00 = \$5.00
- \$2.00 the first day
 \$4.00 the second day
 \$16.00 the third day
 \$256.00 the fourth day
 \$65,536.00 the fifth day
 \$64,814.00 total
- 3. $3 \times 2 = 6 \text{ units}^2$ $9 \times 4 = 36 \text{ units}^2$
- 4. Sketches and dimensions will vary. The student should notice that when the dimensions are squared, the area will be squared.
- Sketches and dimensions will vary the student should notice that when the dimensions are cubed. The area will be cubed.

- 6. Area = base x height, so the area of this rectangle will be ab. If the length and the width of the rectangle are both cubed, the new area will be a^3b^3 , which can also be expressed as $(ab)^3$.
- 7. If the radius is doubled, the area will increase four-fold.
- 8. Ex: r = 2, A = 3.14(4) = 12.56 $r^2 = 4$, A = 3.14(16) = 50.24New area is 4 times original area
 If you start with a radius of 3 and square it, the new area will be 9 times the original area. Squaring the radius of a circle causes the area to increase by a factor of r^2 .
- 9. $A = 10 \frac{20+15}{2}$ = $10 \frac{35}{2}$ = $\frac{350}{2} = 175 \text{ sq in}$
- 10. Trapezoid: $12 \frac{21+26}{2} = 12 \frac{47}{2} = 6(47) = 282 \text{ cm}^2$ Large semicircle: $\frac{3.14(6)^2}{2} = \frac{3.14(36)}{2} = 3.14(18) = 56.52 \text{ cm}^2$ Small semicircle: $\frac{3.14(2)^2}{2} = \frac{3.14(4)}{2} = \frac{12.56}{2} = 6.28 \text{ cm}^2$ $282-56.52-6.28 = 219.2 \text{ cm}^2$

1.

2.

3.

4.

- 5. 3 facts and 7 facts
- 6. 12
- 7. 28
- 8. 88; multiply one less than the number of weeks by four to get the number of rooms.

10.
$$5+8=13$$

 $8+13=21$

11.	step	1	2	3	4	5	6	7
	blocks	1	3	6	10	15	21	28

- 12. Add one more than the number that was added in the previous step. 28+8=36
- 13. Take the number of steps times one more than the number of steps, and divide by 2.
 If you figured that out without looking, give yourself a pat on the back!
 9(9+1) ÷ 2 =

$$9(9+1) \div 2 =$$

 $9(10) \div 2 =$
 $90 \div 2 = 45$

Honors Lesson 7

- 1. Add 7 to the last number to find the next number in the sequence.
- 2. 35
- 3. Square the last number to find the next number in the sequence.
- 4. 65,536
- 5. Add one more to the last number each time: 1 + 4 = 5; 5 + 5 = 10; 10 + 6 = 16
- 6. 16+7=2323+8=31
- 7. Add twice as many to the last number each time: 1 + 2 = 3; 3 + 4 = 7; 7 + 8 = 15
- 8. 15+16=3131+32=63
- 9. Add the last two numbers in the sequence to find the next 1 + 2 = 3; 2 + 3 = 5; 3 + 5 = 8

- 1. sum, how many, total in all
- difference, how many more, have left
- 3. times, product, fraction of
- 4. how many for each, how many parts
- 5. 2+5=7 7-1=6(2+5)-1=6 pencils
- 6. K + M + Q
- 7. X + Y total treats
 (X+Y) ÷ Z treats per person
- 8. $\frac{1}{3}$ completed, $\frac{2}{3}$ to go $\frac{2}{3}x(A+B)$ or $\frac{2(A+B)}{3}$ $\frac{2A+2B}{3}$ is also correct

1.
$$\frac{A}{A} + \frac{B}{A} = \frac{A+B}{A}$$

$$2. \quad \frac{Y}{Z} - \frac{X}{Z} = \frac{Y - X}{Z}$$

3.
$$\frac{A+B}{E} + \frac{C}{E} = \frac{A+B+C}{E}$$

$$4. \quad \frac{A}{X} + \frac{B}{Y} = \frac{AY}{XY} + \frac{BX}{XY} = \frac{AY + BX}{XY}$$

5.
$$\frac{EF}{T} - \frac{G}{S} = \frac{EFS}{TS} - \frac{GT}{TS} = \frac{EFS - GT}{TS}$$

6.
$$\frac{X}{RS} + \frac{X}{QS} = \frac{XQ}{QRS} + \frac{XR}{QRS} = \frac{XQ + XR}{QRS}$$

7.
$$\frac{A}{B} \times \frac{C}{D} = \frac{AC}{BD}$$

8.
$$\frac{X}{R} \times \frac{X}{S} = \frac{X^2}{RS}$$

9.
$$\frac{DF}{YZ} \times \frac{Y}{D} = \frac{DFY}{YZD} = \frac{F}{Z}$$

10.
$$\frac{A}{B} \div \frac{A}{B} = \frac{A \div B}{A \div B} = \frac{1}{1} = 1$$

11.
$$\frac{Q}{Z} \div \frac{YZ}{T} = \frac{QT}{ZT} \div \frac{YZ^2}{ZT} =$$

$$QT \div YZ^2 \qquad QT$$

$$\frac{QT \div YZ^2}{ZT \div ZT} = \frac{QT}{YZ^2}$$

12.
$$\frac{X}{R} \div \frac{R}{X} = \frac{X^2}{RX} \div \frac{R^2}{RX} = \frac{X^2 \div R^2}{RX \div RX} = \frac{X^2}{R^2}$$

13.
$$\frac{Q}{X} + \frac{R}{P} = \frac{QP}{XP} + \frac{XR}{XP} = \frac{QP + XR}{XP}$$
14.
$$\frac{DT}{S} \times \frac{C}{D} = \frac{DTC}{SD} = \frac{TC}{S}$$

14.
$$\frac{DT}{S} \times \frac{C}{D} = \frac{DTC}{SD} = \frac{TC}{S}$$

15.
$$\frac{L}{B} \div \frac{U}{B} = \frac{L \div U}{B \div B} = \frac{L \div U}{1} = \frac{L}{U}$$

16.
$$X = A - Y$$

17.
$$Y = A - X$$

18.
$$5X - 4X = B + B$$

 $X = B + B$
 $X = 2B$

same way he came 18 + 24 = 42 miles 42-30 = 12 miles shorter by direct route

2.
$$15^2 + 36^2 = H^2$$

 $225 + 1296 = 1521$
 $39 \text{ ft} = H$
 $39 + 3 = 42 \text{ ft}$

3.
$$3^2 + 4^2 = H^2$$

 $9+16=25$
 $5 \text{ miles} = H$
 $5+5=10 \text{ miles}$

4.
$$20^2 + 48^2 = H^2$$

 $400 + 2304 = 2704$
 $52 \text{ mi} = H$
 $P = 20 + 48 + 20 + 48 = 136 \text{ mi}$
 $136 + 52 = 188 \text{ miles of fence}$

5.
$$\frac{A}{B} \div \frac{C}{D} = \frac{AD}{BD} \div \frac{BC}{BD} = \frac{AD \div BC}{BD \div BD} = \frac{AD}{BC}$$

6.
$$\frac{A}{B} \times \frac{D}{C} = \frac{AD}{BC}$$

7.
$$\frac{AD}{BC} = \frac{AD}{BC}$$

8.
$$\frac{XY}{Z} \div \frac{B}{CD} = \frac{XYCD}{ZCD} \div \frac{ZB}{ZCD} = \frac{XYCD \div ZB}{ZCD \div ZCD} = \frac{XYCD \div ZB}{1} = \frac{XYCD}{ZB}$$

$$\frac{XY}{Z} \times \frac{CD}{B} = \frac{XYCD}{ZB}$$

The answers are equal.

Honors Lesson 10

$$18^2 + 24^2 = H^2$$

$$30 \text{ miles} = H$$

- 1. multiply by 3 and add 1
- 2. 202
- 3. divide by 2
- 4. 5

- 5. take square root of
- 6. 2
- 7. subtract half of what was subtracted the previous time
- 8. $2\frac{1}{2}$; $2\frac{1}{4}$
- 9.

	 	
1 2 3 4 5 6		

- 10. 2; no
- 11.

step	1	2	3	4	5
circles	1	4	9	16	25
squares	4	8	12	16	20

- 12. the number of circles equals the step number squared
- 13. the number of squares equals the step number times 4
- 14. $8^2 = 64$ circles 8 x 4 = 32 squares

- 1. 1 x 36
 - 2 x 18
 - 3 x 12
 - 4 x 9
 - 6 x 6
- 2. P = 2(1) + 2(36) =
 - 2 + 72 = 74 units
 - P = 2(2) + 2(18) =
 - 4 + 36 = 40 units
 - P = 2(3) + 2(12) =
 - 6 + 24 = 30 units
 - P=2(4)+2(9)=
 - 8+18=26 units
 - P=2(6)+2(6)=
 - 12+12=24 units
- 3. 6 x 6
- 4. 6 x 10

- 5. 1 x 15
- 6. 1 x 5
 - 2 x 4
 - 3 x 3
- 7. $1 \times 5 = 5 \text{ units}^2$
 - $2 \times 4 = 8 \text{ units}^2$
 - $3 \times 3 = 9 \text{ units}^2$
- 8. $3 \times 3 = 9 \text{ ft}^2$
- The shape she chooses would depend on what she intended it to be used for. Some possibilities:
 - $5 \times 5 = 25 \text{ ft}^2$
 - $4 \times 6 = 24 \text{ ft}^2$
 - $3 \times 7 = 21 \text{ ft}^2$
- 10. They enclose the most space with least exposure.

- 1. AX = ABC
 - X = BC
- 2. XY B = Q
 - XY = B + Q

$$X = \frac{B + Q}{Y}$$

- 3. CDX + E = RD
 - CDX = RD E

$$X = \frac{RD - E}{CD}$$

- 4. YX YT = YZ
 - X T = Z
 - X = Z + T
- 5. Q(X+B) = R(X+C)
 - QX + QB = RX + RC
 - QX RX = RC QB
 - X(Q-R) = RC QB
 - $X = \frac{RC QB}{Q R}$

6.
$$AX - BX - C = CX + X + E$$

$$AX - BX - CX - X = E + C$$

$$X(A-B-C-1)=E+C$$

$$X = \frac{E + C}{A - B - C - 1}$$

7.
$$\sqrt{32} = 5.7$$

8.
$$\sqrt{150} = 12.2$$

9.
$$\sqrt{75} = 8.7$$

10.
$$\sqrt{481} = 21.9$$

11.
$$L^2 + L^2 = H^2$$

$$9^2 + 7^2 = H^2$$

$$81 + 49 = H^2$$

$$130 = H^2$$

$$H = \sqrt{130}$$

between 11 and 12:

$$11^2 = 121$$

$$12^2 = 144$$

$$.4 \times 12 = 4.8$$
"

to the nearest inch

11'5"

Honors Lesson 14

1.
$$X + X + 20 = 144$$

$$2X + 20 = 144$$

$$2X = 124$$

X = 62 on one shelf

62+20=82 books on the other shelf

62 + 82 = 144 books total

2. X boys went out for swimming

X + 18 boys went out for baseball

$$X + X + 18 = 48$$

$$2X + 18 = 48$$

$$2X = 30$$

X = 15 boys for swimming

X + 18 = 33 boys for baseball

15 + 33 = 48 boys total

3. Lisa made X cards

$$X + 3X = 32$$

$$4X = 32$$

X = 8 cards for Lisa

 $8 \cdot 3 = 24$ cards for June

$$24 + 8 = 32$$
 cards total

4.
$$P = 2L + 2W$$

$$(40) = 2(16) + 2W$$

$$40 = 32 + 2W$$

$$8 = 2W$$

$$2(4) + 2(16) = 40$$

$$8 + 32 = 40$$

$$40 = 40$$

5. J = number of dollars Jill earned

$$J + 2J + 3J = $150$$

$$6J = $150$$

$$J = $25 \text{ for Jill}$$

$$2.$25 = $50 \text{ for Joan}$$

$$3.$25 = $75$$
 for Deb

6.
$$P = 2L + 2W$$

$$22 = 2(X) + 2(X + 1)$$

$$22 = 2X + 2X + 2$$

$$20 = 4X$$

X = 5 in for the short side

X + 1 = 6 in for the long side

$$2(5) + 2(6) = 10 + 12 = 22$$
 in

Honors Lesson 15

1. rectangular walls:

$$2(25x12) + 2(18x12) =$$

$$2(300) + 2(216) =$$

$$600 + 432 = 1.032 \text{ ft}^2$$

triangular sections:

$$2 \frac{1}{2} (12x18) = 216 \text{ ft}^2$$

total:

$$1.032 + 216 = 1.248 \text{ ft}^2$$

- 1,248 ÷ 425 = 2.94 gal (rounded)
 2.94 x 2 coats = 5.88 gal, so
 6 gal will need to be purchased
 6 x 28 = \$168
- if 2 5-gallon buckets were purchased 2 x 120 = \$240.00
 In a real life situation you probably would have purchased one 5-gallon bucket, and a 1-gallon bucket.
 120 + 28 = \$148
 168-148 = \$20 savings
- 4. 1,248 ÷ 250 = 5 gal(rounded)
 5 x 2 coats = 10 gal
 10 x 20 = \$200
 The more expensive paint is a
- The more expensive paint is a better buy, because you don't have to buy as much of it.
- 5. 4(18) + 4(25) = 72 + 100 = 172 ft^2

$$1248 - 172 = 1076 \text{ ft}^2$$

- 6. 1076 x 1.12 = 1205.12 13 squares
- 7. whole rectangle:

$$12 \times 18 = 216 \text{ ft}^2$$

closet:

$$6 \times 3 = 18 \text{ ft}^2$$

cutout:

$$4 \times 8 = 32 \text{ ft}^2$$

$$216 - 18 - 32 = 166 \text{ ft}^2$$

8. 9 sq ft in a yd^2

$$166 \div 9 = 18.44 \text{ yd}^2 (\text{rounded})$$

9. $18.44 \times 1.10 = 20.28 \text{(rounded)}$

$$21 \text{ yd}^2 \text{ needed}$$

 $12 \times 21 = 252

10. $166+18=184 \text{ ft}^2$ $184 \div 9 = 20.45 \text{ yd}^2$

$$20.45 \times 1.10 = 22.495 \text{ yd}^2$$

23 yd² will be needed

 $23 \times 12 = 276

Honors Lesson 16

1. each face is a triangle

$$A = \frac{1}{2}(bh)$$

$$A = \frac{1}{2}(4)(3.5)$$

 $A = 7 in^2 per face$

$$7.8 = 56 \text{ in}^2$$

2. each face is a square

$$5 \times 5 = 25 \text{ in}^2 \text{ per face}$$

$$25 \times 6 = 150 \text{ in}^2$$

3. each face is a triangle

$$A = \frac{1}{2}(bh)$$

$$A = \frac{1}{2}(10)(8.7)$$

$$A = 43.5 \text{ cm}^2 \text{ per face}$$

$$43.5 \times 20 = 870 \text{ in}^2$$

4.
$$4+4=6+2$$

5.
$$8+6=12+2$$

6.
$$12 + 20 = 30 + 2$$

$$32 = 32$$

7.
$$20+12=30+2$$

Honors Lesson 17

1-2.

3-4.

5-6.

- 7. 1+4+10=15
- Answers will vary, but the sum of the numbers in the "handle" of the "hockey stick" will always equal the number in the smaller rectangle.

Honors Lesson 18

1.
$$M + (M-11) = 21$$

$$2M - 11 = 21$$

$$2M = 32$$

M = \$16 for the meal

16-11=\$5.00 for dessert

2. 6-7+3-4=-2 mi east, or 2 miles west. The answer should not be written as a negative number, because it is a distance, and distance is always positive.

3.
$$X + (X - 200) = 300$$

$$2X - 200 = 300$$

$$2X = 500$$

$$X = 250$$

Isaac has \$250

 Let J = the number of dollars John earned

$$J+(J-18) = 60-3.50$$

$$2J-18=56.50$$

$$2J = 74.50$$

$$J = $37.25$$

5. In a square, the perimeter is 4 times the length of one side, so:

$$S = (S+57) \div 4$$

$$4S = S + 57$$

$$3S = 57$$

6. Distance is always positive, so he should have reported the distance as 20 ft.

$$P = W + W + L + L$$

$$52 = W + W + 20 + 20$$

$$52 = 2W + 40$$

$$12 = 2W$$

$$W = 6 ft$$

8. using fractions:

$$N \times \frac{9}{5} + 32 = (N - 32) \times \frac{5}{9}$$

$$45 N \times \frac{9}{5} + 45(32) = (N - 32) \times \frac{5}{9}(45)$$

$$81N+1,440 = (N-32)x25$$

$$81N+1,440 = 25N-800$$

$$56N = -800 - 1,440$$

$$56N = -2,240$$

$$N = -40^{\circ}$$

using decimals:

$$1.8N + 32 = (N-32)x.56$$
(rounded)

$$1.8N + 32 = .56N - 17.92$$

$$1.8N - .56N = -17.92 - 32$$

$$1.24N = -49.92$$

$$124N = -4992$$

(In this case, the fractions give the exact value, and the decimals give an approximate value because of the rounding.)

Honors Lesson 19

1.
$$\frac{8+6}{6} = \frac{180}{F}$$
$$\frac{14}{6} = \frac{180}{F}$$

$$14F = 6(180)$$

 $7F = 3(180)$

$$F = 77 \frac{1}{7} \text{ gal}$$
2.
$$\frac{40 + 20}{20} = \frac{135}{S}$$

$$\frac{60}{30} = \frac{135}{5}$$

$$60S = 20(135)$$

$$3S = 135$$

S = \$45 for the son

\$135-\$45=\$90

for the father

3.
$$\frac{4}{200} = \frac{T}{575-200}$$
$$\frac{4}{200} = \frac{T}{375}$$
$$200T = 4(375)$$
$$50T = 375$$
$$T = 7\frac{1}{2} =$$

4.
$$\frac{8.5}{200} = \frac{G}{575}$$
$$200G = 8.5(575)$$

(rounded)

$$5. \quad \frac{3}{2} = \frac{7}{L}$$

$$3L = 14$$

$$L = 4\frac{2}{3}$$
 loaves

She can make 4 whole loaves.

$$6. \quad \frac{4}{3} = \frac{T}{81}$$

$$3T = 324$$

$$T = 108 \text{ ft}$$

7.
$$6 \times 5 = M \times 3$$

$$30 = 3M$$

8.
$$15 \times 36 = (15 + 9) \times D$$

$$540 = 24D$$

$$D = 22.5 \text{ days}$$

Honors Lesson 20

1.
$$\frac{4}{5.2} = \frac{25}{D}$$

$$4D = 5.2(25)$$

$$4D = 130$$

$$D = 32.5$$

33 miles rounded

2.
$$8.2 + 4.5 = 12.7$$
 cm

$$\frac{4}{12.7} = \frac{25}{D}$$

$$4D = 12.7(25)$$

$$4D = 317.5$$

D = 79.375 79 miles rounded

3.
$$\frac{5}{7} = \frac{14}{D}$$

$$5D = 7(14)$$

$$5D = 98$$

$$D = 19\frac{3}{5}$$
 or 19.6 miles

4.
$$\frac{5}{3} = \frac{D}{6}$$

$$3D = 5(6)$$

$$3D = 30$$

$$D = 10 \text{ cm}$$

5.
$$\frac{10}{15} = \frac{4000}{D}$$

10D = 15(4000)

2. yes

3. no

4. 11; it holds true (see diagram)

5. The next prime is 13; see diagram for shading of multiples of ten

Honors Lesson 22

1. 20; 35,690

2. 20; 35; 35,690

3. 20; 35,690

4. 105; 75,084

5. 6055; 45,759

6. 792; 1,639; 90,959

7. Digits add to 33, so it is a multiple of 3. 692,835÷3 = 230,945. It ends in 5, so it is a multiple of 5. 230,945÷5 = 46,189. 4,168-18 = 4,600: not a multiple of 7. 4+1+9 = 14; 6+8 = 14: 14-14 = 0, so it is a multiple of 11. 46,189÷11 = 4,199 4+9 = 13; 1+9 = 10; 13-10 = 3 not a multiple of 11. Try 13: 4 199÷13 = 323. Try 17: 323÷17 = 19. Prime factors of 692,835 are: 3 x 5 x 11 x 13 x 17 x 19

Honors Lesson 23

- 1. P = 2W + 2L 2(X-5) + 2(2X+9) = 2X-10+4X+18 =6X+8
- 2. 6(8) + 8 = 48 + 8 = 56 W = (8) - 5 = 3 L = 2(8) + 9 = 25 3 + 3 + 25 + 25 = 56ves
- 3. $(X-3)+(X+18)+(X^2-2)=$ $X^2+2X+13$
- 4. $(5)^2 2 = 25 2 = 23$ (5) - 3 = 2(5) + 18 = 23
- 5. (4X+3)+(3X+1)+(X)+(2X)+(X)+ ((4X+3)-(2X))+(3X+1)=14X+5+(2X+3)=16X+8
- 6. room: 4(3)+3=15 ft 3(3)+1=10 ft closet is 3 ft x 6 ft
- 7. 16(3) + 8 = 56 ft
- 8. 6
- 56 x .10 = 5.6 ft of waste
 56 + 5.6 = 61.6 ft total
 7 lengths should be purchased

Honors Lesson 24

- 1. $4 \times 6 \times .5 = 12 \text{ ft}^3$
- 2. $3 \times 3 \times 3 = 27 \text{ ft}^3$
- 3. $27 12 = 15 \text{ ft}^3$
- 4. $5 \times 6 \times .5 = 15 \text{ ft}^3$
- 5. $15+12 = 27 \text{ ft}^3$ $27 \text{ ft}^3 = 1 \text{ yd}^3$ no sand will be left over
- 6. Mr. Brown: $\frac{12}{27} \text{ of } 40 = \17.78 Mr. White: $\frac{15}{27} \text{ of } 40 = \22.22
- 7. 12 x 18 = 216 ft²
- 8. $216 \times .5 = 108 \text{ ft}^3$
- 9. $108 \div 27 = 4 \text{ yd}^3$
- 10. 4 x 80 = \$320
- 11. \$500 \$320 = \$180
- 12. $12 \times 24 \times .5 = 144 \text{ ft}^3$ $144 \div 27 = 5.33 \text{ yd}^3$ $10 - 4 = 6 \text{ yd}^3$ yes

- 1. $A = \frac{1}{2}(X+1)(2X-6) =$ $\frac{1}{2}(2X^2-4X-6) =$ X^2-2X-3 $(4)^2-2(4)-3=16-8-3=5 \text{ units}^2$
- 2. A = (2X+1)(X+7) = $2X^2+15X+7$
- 3. $A = (x)(2x) = 2x^2$

$$2(5)^2 = 2(25) = 50 \text{ ft}^2$$

bedroom:

$$2(5)^2 + 15(5) + 7 = 50 + 75 + 7 =$$

132 units²

5.
$$(x+8)(2x+2)$$

6.
$$((5)+8)(2(5)+2) = (13)(12) =$$

156 ft²

$$156 - 132 = 24 \text{ ft}^2$$

7.
$$156 \text{ ft}^2 + 50 \text{ ft}^2 = 206 \text{ ft}^2$$

$$206 \div 9 = 22.89 \text{ yd}^2 \text{(rounded)}$$

23 vd² will need to be purchased

No, the cost of installation will more than offset the per-yard cost savings.

10.
$$L = 2(2X^2 + 2X - 7) + 2(X^2 + 3X - 2) =$$

$$4x^2 + 4x - 14 + 2x^2 + 6x - 4 =$$

$$6x^2 + 10x - 18$$

$$6(2)^2 + 10(2) - 18 =$$

$$24 + 20 - 18 = 26$$
 in

11.
$$P = 6(2X^2 - 4X + 1) = 12X^2 - 24X + 6$$

$$2(5)^2 - 4(5) + 1 = 50 - 20 + 1 = 31$$
 units

Honors Lesson 26

1.
$$7-5=2$$

$$\frac{2}{5} = 2 \div 5 = .4 = 40\%$$
 growth

$$73 - 64 = 9$$

$$\frac{9}{64}$$
 = 9 ÷ 64 = .1406 =

14% growth (rounded)

3.
$$6,500-5,000=1,500$$

$$\frac{1500}{5000} = 1500 \div 5000 =$$

$$.3 = 30\%$$
 growth

4.
$$16-7=9$$

$$\frac{9}{7} = 9 \div 7 = 1.2857 =$$

129% growth (rounded)

5.
$$5,000 - 4,000 = 1,000$$

$$\frac{1000}{5000} = 1000 \div 5000 =$$

6.
$$6,500 - 4,000 = 2,500$$

$$\frac{2500}{6500} = 2500 \div 6500 =$$

.3846 =38% decrease

Honors Lesson 27

1. Prarie Dogs:

$$\frac{65+71+35+10}{4} = 45.25$$

Raccoons:

$$\frac{30+30+50+30}{4}=35$$

Hound Dogs:

$$\frac{22+71+89+80}{4}=65.5$$

Hound Dogs had the best record

- 2. median
- 3. median
- game 1: 30

game 2: 71

game 3: 50

game 4: 30

$$\frac{30+71+50+30}{4} = 45.25$$

5. 30

6.
$$80-10=70$$

7. game 1: 65 - 22 = 43

game 2: 71 - 30 = 41

game 3: 89 - 35 = 54

$$\frac{43+41+54+70}{4} = 52$$

1. $\frac{1.024 + 1.021 + 1.023 + 1.019}{4} =$

1.022 (rounded)

- 2. 1.024-1.022 = .002 $.002 \div 1.022 = .0019$ or .19%
- 3. 1.022-1.019 = .003 $.003 \div 1.022 = .0029 \text{ or } .29\%$
- 4. $\frac{2.056 + 2.123 + 2.007}{3} = 2.062$
- 5. 2.123-2.062 = .061 .061÷2.062 = .0296 = 2.96%
- 6. 2.062-2.007 = .055 $.055 \div 2.062 = .0267 = 2.67\%$
- 7. No, the gauge is not giving results within allowed margin of error.

Honors Lesson 29

- 1. 1,000 g
 - 1 kg
- 2. $100 \times 100 \times 100 = 1,000,000 \text{ cc}$ $1,000,000 \div 1,000 = 1,000 \text{ I}$
- 2 ml

236

- 4. $160 \times 125 = 20,000 \text{ m}^2$ $20,000 \div 10,000 = 2 \text{ ha}$
- 5. $7 \times 10,000 = 70,000 \text{ m}^2$
- 6. $1,000 \times 1,000 = 1,000,000 \text{ m}^2$ in a km²

 $1,000,000 \div 10,000 = 100 \text{ ha in km}^2$

Honors Lesson 30

- 1. yes
- 2. rational
- 3. rational
- 4. yes
- 5. no
- 6. rational, real

SOLUTIONS PRE ALGEBRA HONORS